Biophysical and Economic Analysis of Black Spruce Regeneration in Eastern Canada Using Global Climate Model Productivity Outputs
نویسندگان
چکیده
We explore the biophysical potential and economic attractiveness of black spruce (Picea mariana) regeneration in eastern Canada under the high greenhouse gas emission scenario (RCP 8.5) of the Intergovernmental Panel on Climate Change (IPCC). The study integrates net primary productivity and net ecosystem productivity estimates from three major global climate models (GCMs), growth and yield equations specific to black spruce, and economic analyses to determine spatially varying investment values of black spruce regeneration—both including and excluding carbon sequestration benefits. Net present value (NPV) was used to represent financial attractiveness. It was assumed that stands would not be harvested at volumes less than 80 m3·ha−1. A baseline case with the stumpage price set to $20 m−3, stand establishment cost $500 ha−1, and the discount rate 4%, was used with wide-ranging sensitivity analyses conducted around these assumptions. These values represent the wide range of choices and outcomes possible with black spruce regeneration investments. The results indicated a latitudinal gradient in economic attractiveness, with higher forest productivity and NPVs in the southern portion of the study area; however, black spruce regeneration was not economically attractive unless regeneration costs were very low (representing something closer to a natural regeneration type scenario) and/or carbon sequestration benefits of at least $5 ton−1 CO2 were realized. In general, the optimal harvest rotation age increased with increasing carbon price by approximately 9 to 18 years. Results of this study highlight the importance of future price and yield expectations and establishment costs in evaluating forest investments.
منابع مشابه
Simulating the Potential Effects of a Changing Climate on Black Spruce and Jack Pine Plantation Productivity by Site Quality and Locale through Model Adaptation
Modifying the stand dynamic functional determinates of structural stand density management models (SSDMMs) through the incorporation of site-specific biophysical height-age equations enabled the simulation of the effects of increasing mean temperature and precipitation during the growing season on black spruce (Picea mariana (Mill.) BSP) and jack pine (Pinus banksiana Lamb.) plantation producti...
متن کاملManaging Understory Vegetation for Maintaining Productivity in Black Spruce Forests: A Synthesis within a Multi-Scale Research Model
Sustainable management of boreal ecosystems involves the establishment of vigorous tree regeneration after harvest. However, two groups of understory plants influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces OPEN ACCESS
متن کاملSurvival and growth patterns of white spruce (Picea glauca [Moench] Voss) rangewide provenances and their implications for climate change adaptation
Intraspecific assisted migration (ISAM) through seed transfer during artificial forest regeneration has been suggested as an adaptation strategy to enhance forest resilience and productivity under future climate. In this study, we assessed the risks and benefits of ISAM in white spruce based on long-term and multilocation, rangewide provenance test data. Our results indicate that the adaptive c...
متن کاملWhite Spruce Meets Black Spruce: Dispersal, Postfire Establishment, and Growth in a Warming Climate
Local distributions of black spruce (Picea mariana) and white spruce (Picea glauca) are largely determined by edaphic and topographic factors in the interior of Alaska, with black spruce dominant on moist permafrost sites and white spruce dominant on drier upland sites. Given the recent evidence for climate warming and permafrost degradation, the distribution of white spruce is expected to expa...
متن کاملEffects of Competition, Drought Stress and Photosynthetic Productivity on the Radial Growth of White Spruce in Western Canada
Understanding the complex interactions of competition, climate warming-induced drought stress, and photosynthetic productivity on the radial growth of trees is central to linking climate change impacts on tree growth, stand structure and in general, forest productivity. Using a mixed modeling approach, a stand-level photosynthetic production model, climate, stand competition and tree-ring data ...
متن کامل